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It is shown that if a space-time (M, g) is time-orientable and its Levi-Civita 
connection [in the bundle of orthonormal frames over (M, g)] is reducible to 
an 0(3) structure, one can naturally select a nonvanishing timelike vector field 
~: and a Riemann metric g+ on M. The Cauchy boundary of the Riemann space 
(M, g+) consists of "endpoints" of b-incomplete curves in (34, g); we call it the 
Cauchy singular boundary. We use the space-time of a cosmic string with a conic 
singularity to test our method. The Cauchy singular boundary of this space-time 
is explicitly constructed. It turns out to consist of what should be expected. 

I N T R O D U C T I O N  

Schmidt ' s  ( 1971) b - b o u n d a r y  const ruct ion was once believed to provide  
the best definition o f  space-t ime singularities (see, Hawking  and Ellis, 1973, 
pp. 276-284).  It was a c o m m o n  surprise when it became manifest  that  the 
b - b o u n d a r y  behaves badly  in some impor tan t  situations. It  turned out  that  
in the closed Fr iedman universe both  the initial and final singularities form 
the same, and  single, po in t  o f  the b -bounda ry  (Bosshard,  1976) and that  
in both  F r i edman  and Schwarzschi ld  solutions the b o u n d a r y  points  are not  
Hausdorf f -separa ted  f rom the cor responding  space-t ime (Johnson,  1977). 
There were several a t tempts  to cure the si tuation (Dodson ,  1979; Clarke, 
1979), but  they all met other  serious difficulties (see Schmidt,  1979). In  
practice,  the b - b o u n d a r y  has been a b a n d o n e d  by relativists and often 
effectively replaced by the so-called causal b o u n d a r y  (c -boundary)  (Geroch  
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et al., 1972)' which, in a version improved by Penrose (1978), is able to 
distinguish between singular points and regular points at infinity [although 
some difficulties have recently been announced (Szabados, 1988, 1989) 
connected with "topological identifications" which are involved in the 
construction of c-boundaries; the construction works smoothly only for 
stably causal space-times]. It seems, therefore, that in such circumstances 
any contribution at clarifying the situation should be welcomed. 

In the present work we show that by assuming that space-time (M, g) 
is time-orientable and that its Levi-Civita connection is reducible to an 
0(3) structure, one can naturally select a nonvanishing timelike vector field 

on M and a Riemann metric g§ on M. The Cauchy boundary of the 
Riemann space (M, g§ consists of "endpoints" of b-incomplete curves in 
(M, g); we call it the Cauchy singular boundary. As an example, we explicitly 
construct the Cauchy singular boundary of space-time due to a cosmic 
string producing a conic singularity (belonging to the class of the so-called 
quasiregular singularities). 

It should be noticed that the Levi-Civita connection of a time-orientable 
space-time is reducible to an 0(3) structure if the holonomy group of 
this space-time is contained in (or is equal to) the 0(3) group. For all such 
space-times the singular Cauchy boundary can be uniquely constructed. 
The assumption that the connection is reducible to the 0(3) structure 
intervenes only in the proof of the uniqueness of our construction; it seems 
reasonable to believe that it could be substantially weakened. 

In Section 1 we briefly discuss the methodology of the problem. In 
Sections 2 and 3 we show that a space-time is time-orientable if and only 
if the fiber bundle of orthonormal frames over it is reducible to an 0(3) 
structure and we explore some consequences of the reducibility assumption. 
In Section 4 the Cauchy singular boundary is defined, and in Section 5 it 
is constructed for the space-time of a cosmic string with the conic singularity. 
Some comments in Section 6 conclude our work. 

1. SINGULARITIES AND SINGULAR BOUNDARIES 

A Lorentz manifold (iV/, g) is said to be b-complete if every Cl-curve 
of a finite length (measured by a generalized affine parameter) has an 
endpoint in (M, g). If this is not the case, (M, g) is said to be b-incomplete 
(see e.g., Schmidt, 1971; Hawking and Ellis, 1973; Beem and Ehrlich, 1981; 
Dodson, 1978). The b-completeness of space-time has a good physical 
motivation: if a space-time is b-complete, it is both geodesicaUy complete 
and complete in the sense of bounded acceleration (Beem and Ehrlich, 
1981). The b-completeness property divides all Lorentz manifolds ~f:= 
{(M, g)}, where M is a fixed set, into two disjoint classes: ~o and ~fs, 
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= ~ ~  ~ .  Lorentz manifolds belonging to ~o are b-complete and are 
interpreted as singularity-free space-times, whereas Lorentz manifolds 
belonging to ~s are b-incomplete and are interpreted as space-time with 
singularities. 

Let O M ( M ,  0(3, 1)) be a fiber bundle of orthonormal frames over a 
Lorentz manifold (M, g) (in the following its connected component should 
be considered, if necessary), and G+: T O M  x T O M ~ R  the so-called 
Schmidt metric on O M  (Schmidt, 1971; Hawking and Ellis, 1973; Beem 
and Ehrlich, 1981; Dodson, 1978). The following theorem provides a mathe- 
matical foundation for the theory of b-completeness. 

Theorem 1.1. A Lorentz manifold (M, g) is b-complete if and only if 
the Riemann space (OM, G § is metrically complete (m-complete, for short) 
(Schmidt, 1971; Hawking and Ellis, t973; Beem and Ehrlich, 1981; Dodson, 
1978). 

It would be natural to organize space-time singularities into a kind of 
"singular boundary" OM of space-time (M, g), for instance, as a set of 
equivalence classes of b-incomplete curves in (M, g) (i.e., curves of finite 
length in a generalized affine parameter). Such a singular boundary should 
satisfy the following condition: 

(*) A space-time (M, g) is singularity-free if and only if OM = f~. 

The concept of b-completeness does not automatically contain any construc- 
tion of a singular boundary, but it should be supplemented with such a 
construction. It should be stressed that any construction of a singular 
boundary satisfying condition (*) has equally good physical motivation. Two 
such constructions were given by Schmidt (1971) and Dodson (1978). Let 
us briefly review the main steps of the Schmidt construction: 

First, one Cauchy completes the Riemannian space (OM, G+). 
Second, one suitably extends the action of the structural group 0(3, 1) 

of the fiber bundle of orthonormal frames over M onto the Cauchy comple- 
tion O M  of OM. 

Third, one t rea ts /~ :=  O M / O ( 3 ,  1) as a space-time with the singular 
boundary OhM := h~t -- M, called b-boundary of space-time (M, g). Unfortu- 
nately, however, the Cauchy completion of (OM, G+), in general, is not a 
manifold and consequently the object O M ( M ,  1r-o~, 0(3, 1)), where 
r O M  ~ M is a suitably extended projection zroM : O M  ~ M, is not a 
fiber bundle. "Fibers" over b-boundary points can be strongly degenerate, 
and in such a case the usual theory of fiber bundles breaks down. Such a 
situation indeed occurs in the closed Friedman and Schwarzschild solutions 
(Bosshard, 1976; Johnson, 1977). 
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2. TIME ORIENTABILITY OF SPACE-TIME 

The orientability of space-time on the local scale is one of the best 
empirically established facts, and globally it is a natural and philosophically 
appealing assumption. As is well known, a Lorentz metric exists on a 
paracompact manifold if and only if a continuous direction field can be 
defined on it. A space-time manifold is time-orientable if and only if this 
direction field can be replaced by a timelike vector field (Geroch and 
Horowitz, p. 225). We shall incorporate this property into our construction 
from the very beginning through the following result. 

Proposition 2.1. A Lorentz manifold (M, g) is time-orientable if and 
only if the fiber bundle OM(M, 0(3, I)) is reducible to an 0(3)  structure 
P(M, 0(3)). 

Proof Let a C a timelike vector field cr :M ~ TM exist on (M, g). Since 
any such vector field can be approximated, with any desired approximation, 
by a smooth timelike field (Steenrod, 1951, p. 25), we may assume that cr 
is smooth. By suitably normalizing it, we obtain a smooth cross section 
tro: M ~ UM of the sphere bundle UM (see Appendix B). Because of the 
isomorphism ~b indicated in Appendix B, the above implies the existence 
of  a smooth cross section of the bundle (OM x Y()/0(3, 1) associated with 
OM(M, 0(3,  1)). Therefore, on the strength of Theorem A2 (Appendix A), 
there is a smooth 0(3,  1)-equivariant mapping ch:OM~Yg such that 
tro(zr(p)) =(p ,  &(p)). Now, since ~ is a homogeneous space of the group 
0(3,  I) acting on (•4, ~7), ~7 = d i a g ( - l ,  I, I, 1), and 0(3) is the stability 
subgroup of the point fo = (1, 0, 0, 0), Theorem A1 implies that P := &-l(fo) 
is an 0(3) structure P(M, 0(3)). 

The inverted chain of implications easily proves the converse. [] 

Let (0i) be a local frame in M;  then (x, bjOi) ~ OM, where x ~ M and 
bj ~ 0(3,  1). We define the so-called Sachs "projection" 7roe:OM-~ UM 

boOi) (Sachs, 1973). The following proposition is a by Zrou(X, bjO,) = (x, i 
straightforward consequence of Theorems A1 and A2. 

Proposition 2.2. There is a one-to-one correspondence between cross 
sections ~: M ~ UM of the bundle UM and 0(3, 1)-equivariant mappings 
ch:OM~Y(  of the form ch(p)=g-~ho, where ho~ Yg, ho=(1 ,0 ,0 ,0 ) ,  g e  
0(3,  1), p =Pog, and Po is a point of an 0(3)  structure P(M, 0(3)). The 
cross section ~ assumes the form ~: = 0 ~ where 0 is defined in Appendix 
B, and ~ : M ~ ( O M x Y O / O ( 3 ,  1), o-(x)= (p, 4~(P)), x=TroM(p). 

As another consequence of Theorems A1 and A2, we have the following 
results. 
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Proposition 2.3. If  the bundle OM(M, 0(3 ,  1)) is reducible to an 0(3)  
structure P(M, O(3)), then the mapping l-I: OM ~ UM, defined by I t (p )  := 
(r cr)(croM(p)), has the property 

nip  = ~'oul~ 

3. REDUCIBILITY OF CONNECTION 

In this section we shall explore the consequences of  the assumption 
that the connection on OM is reducible to an 0(3)  structure. 

Proposition 3.1. Let P(M, 0(3))  be an 0(3)  structure in 
OM(M, ~roM, 0(3,  1)). If  a connection F in OM is reducible to P, then for 
every b-incomplete Cl-curve y : J ~ M  there exists its horizontal lift 
contained in P(M, O(3)), and the curve ~ is m-incomplete in (P, ~*G+), 
where G + is Schmidrs metric, and L:P--> OM is a natural inclusion 
(~(p) =p,p~ P). 

Proof This is a straightforward modification of the proof  given by 
Dodson (1978, p. 461). [] 

The following proposition is important as far as the uniqueness of  our 
construction is concerned. 

Proposition 3.2. I f  Pk(M, 0(3)) ,  k = 1, 2, are two 0(3)  structures in 
OM(M, 0(3 ,  1)) to which a connection F in OM is reducible, then (i) there 
exists g ~ 0(3 ,  1) such that PI = Pzg, and (ii) the metric spaces (Pk, Dk), 
k = 1, 2, are uniformly equivalent, where Dk are distance functions deter- 
mined by the Riemann metrices Gk := ~*G +, and ~k:Pk ~ OM are natural 
inclusions. 

Proof (i) Let x ~ M and Pk C ~o~(X). Let further Y((Pk) denote the 
holonomy bundle through Pk. There exists a g ~ 0(3 ,  1) such that YC(p~) = 
YC(p2)g and p~ =P2g. It is easy to see that Pk = YC(pk)h, h ~ O(3), and 
PI = P2g. 

(ii) The right action o f g  c 0(3 ,  1) is uniformly continuous on (OM, D), 
where D is a distance function determined by the Riemann metric G § 
(Dodson, 1978, p. 423). [] 

4. D E F I N I T I O N  OF A SINGULAR B O U N D A R Y  

In what follows we shall assume that the considered space-time is a 
time-orientable Lorentz manifold with a connection reducible to an 0(3)  
structure. The reducibility of  the connection uniquely distinguishes a foli- 
ation of  the fiber bundle OM into 0(3)  structures Pi, i 6 / ,  to which the 
connection in OM is reducible. Moreover, every b-incomplete CLcurve in 
M has an m-incomplete lift in P~, for any i ~ I (Proposition 3.1). This means 
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that the "endpoints" of all b-incomplete curves in M (and only they) 
contribute to the construction of the Cauchy boundary OPi of Pi. The metric 
spaces (Pi, Di) are uniformly equivalent and consequently (/5i, Di), where 
/5 is the Cauchy completion of P~, are topologically equivalent. This testifies 
to the fact that the construction of a singular boundary of (M, g) should 
be connected with any of the 0(3) structures P~. Such a construction will 
take into account all b-incomplete curves in M, and will not depend on the 
choice of a particular 0(3)  structure P~. 

Let all symbols be as above, and let us consider two metric spaces 
(OM, D) and (P, /)) ,  where D and /)  are distance functions determined 
by metrics G + and 0+:  = r*G + on OM and P, respectively. 

Proposition 4.1. If {xn} is a Cauchy sequence in (P, / )) ,  then the 
sequence {yn} in UM, defined by y, := II(x,), is a Cauchy sequence in 
( UM, d~), where ds is the distance function determined by the Sachs metric 
g~ in UM (see Appendix B). 

Proof The theorem is a direct consequence of the fact that rI Ie = Zru~lv 
and that the "projection" 7rum is uniformly continuous (Sachs, 1973). �9 

Corollary 4.2. If the bundle OM(M, 0(3,  1)) is reducible to an 0(3) 
structure P(M, O(3)), then: 

(i) On M there exists a distinguished uniform structure defined by the 
distance function d : M x M --> ~+ u {0} which is determined by the Riemann 

+ 
metric g+ := ~ gs,  where ~: M ~ UM is a cross section as given by Proposi- 
tion 2.2. 

(ii) The mapping f of metric spaces (P,/9) onto (M, d), f :  P--> M, 
defined by f = ~'UM ~ is uniformly continuous. 

Let (M, g) be a time-orientable Lorentz manifold such that a connection 
F in OM(M, 0(3, 1)) is reducible to an 0(3) structure P(M, 0(3)). 

Definition 4.3. The Cauchy boundary OM := M - M of the metric space 
(M, d) will be called the Cauchy singular boundary of (M, g). 

Proposition 4.4. The Cauchy singular boundary OM of (M, g) satisfies 
condition (*). 

Proof. If (M, g) is b-complete, (OM, G +) is m-complete (Theorem 
1.1). If (M, G § is m-complete, (P, ~*G +) is m-complete, and Corollary 4.2 
implies that (M, d) is m-complete. Therefore OM=f~. �9 

5. TEST OF THE SINGULAR CAUCHY 
BOUNDARY CONSTRUCTION 

To test our method, we shall construct the singular Cauchy boundary 
of space-times with metrics representing the external gravitational field of 
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a cosmic string. Topological properties of  these space-times are well known 
[since the singularities are introduced by construction (see Staruszkiewicz, 
1983; Ellis and Schmidt, 1977)] and we shall see that the singular Cauchy 
boundary of  these space-times exactly reproduces the known structures. 

Let us consider a Lorentz manifold (M, g) with the metric 

g = - d t Z + d p 2 W p  2 dfh2q-dz 2 (5.1) 

where t, z ~ ,  p~  (0 ,~ ) ,  q ~ ( 0 , 2 ~ r - A ) ,  AE(0,27r) ,  and M is a domain 
of  R 4 which originates by removing from it a wedge A = R 2 x K, K being 
an angle in the plane (x, y), x = p cos q~, y = p sin ~b; A is a measure of  K. 
We can see that (M, g) is the Minkowski space-time from which the wedge 
A has been removed. Of  course, OM represents a regular boundary (Ellis 
and Schmidt, 1977). 

Let us choose the vector field ~: = (1, 0, 0, 0) in (M, g). It can be easily 
checked that in this case the connection is reducible to the 0 (3)  structure 
P corresponding to ~: and that 

g+ := sC*g~ + = dt2 + dp2 + p 2 dO2+ dz 2 

The direct computation shows that the singular Cauchy boundary in this 
case is indeed equal to OM. 

Let now (M~,gl)  be the space-time corresponding to the external 
gravitational field of  a cosmic string 

gl = - d t 2  + a2 dr2+ r2 d (  a2 + dz2 

where t, z ~ ~, cb ~ (0, 2~r), r ~ (0, ~ ) ,  a ~ R, and Mt = R 2 • Co, Co being a 
connected component  of  a cone without the vertex So. M1 originates from 
M (see above) by a suitable gluing up of  the edges of  the wedge A. (M1 ,gl) 
has the quasiregular singularity So • ff~2. 

Similarly as above, we put ~:= (1, 0, 0, 0). The connection is again 
reducible to the 0(3)  structure P corresponding to s c. Moreover, 

g~ = (*g~s = + dt 2+ a 2 dr 2+ r 2 dq 52+ dz 2 

It can be easily checked that the Riemannian manifold has the Cauchy 
(singular) boundary So x ~2. 

These examples show the consistency of  our construction of  the Cauchy 
singular boundary. The construction can be also applied to space-times 
with curvature singularities. It excludes from the very beginning a non- 
Hausdorff behavior of  boundary points. We shall deal with these problems 
in a subsequent work. 
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6. SPACE-TIME AS A DYNAMICAL SYSTEM 

For a time-orientable Lorentz manifold (M, g), there is no uniquely 
determined Cauchy completion. This is a consequence of the fact that M 
is a metrizable but not metric space. In other words, (M, g) has no uniquely 
defined uniform structure and consequently it admits many nonequivalent 
Cauchy completions. This problem has been discussed in Gruszczak (1990), 
where it has been also shown that if one selects a uniform structure for 
(M, g) [or equivalently if one chooses a particular Cauchy boundary of 
(M, g) from among many admissible ones], possibly by appealing to phy- 
sical arguments, one can define space-time in such a way that its topology, 
uniform structure, and time-orientability will simultaneously be determined. 
In the present work we have shown that the assumptions of time-orientability 
and reducibility of connection to an O (3) structure uniquely select a Cauchy 
completion and that the corresponding Cauchy boundary is physically well 
motivated [condition (*) is satisfied]. 

As above, let (M, g) be a space-time. According to Propositions 2.2 
and 3.2, the connection F in O M  distinguishes the class of vector fields 

:= {~: M ~ UM, i ~ I}. Simultaneously, on the strength of Corollary 4.2(i), 
there exists the uniquely distinguished Riemann metric g+ : T M  x T M  ~ 
given by g+ = ~*g+. Let us choose io = L One can easily notice that the 
triple (M, g~+0, ~ )  is a metric dynamical system. The results of the above 
analysis well motivate the following. 

Definition 6.1. A metric dynamical system (M, g~+, ~ )  is said to be a 
space-time with the Cauchy boundary (C-space-time, for short). This boun- 
dary is uniquely determined as a Cauchy boundary of the Riemann manifold 
(M, gi +) [for details see Gruszczak (1990)]. 

It is important to notice that in the definition of C-space-time all 
properties of space-time as the pair (M, g) are preserved because of the 
fact that g is uniquely determined by the relationship g+ = ~i*g+. This 
procedure (and the metric uniform structure determined by it) does not 
depend of the choice of i~ L Of course, the Cauchy boundary of the 
Riemann manifold (M, g~+), which defines the boundary of the C-space-time 
(M, g~+, (~), is a Cauchy singular boundary OM of the space-time (M, g) 
in the sense of Definition 4.3. 

Let us notice that the same assumptions naturally select a timelike 
vector field ( on M, and a Riemann metric g+ on M, and consequently, for 
the considered class of space-times, the dynamical system (M, g+, ~) is 
equivalent to the pair (M, g). In many physical applications (including 
quantization of gravity) it might be much easier to deal with the Riemann 
manifold equipped with a nonvanishing timelike vector field (M, g+, ~) than 
with the Lorentz manifold (M, g). 
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A P P E N D I X  A. REDUCIBLE B U N D L E S  A N D  CROSS SECTIONS 

Let Q(M, G) be a principal fiber bundle. 

Definition A1. Every principal fiber bundle P(M, H) such that (i) P 
is a submanifold of  Q, (ii) H is a subgroup of  G, and (iii) the mapping 
1: P(M, H)-> Q(M, G), I = (re, idM, ~) ,  where t p : P ~  Q, re: H--> G are 
natural inclusions, is a homeomorphism of  principal fiber bundles, is called 
the H structure in Q(M, G). Q(M, G) is said to be reducible to the H 
structure P( M, H). 

Let K and L be manifolds, and G a group acting on K to the right 
and on L to the left. 

Definition A2. A smooth mapping f :  K --> L is called G-equivariant if, 
for any k ~ K and any g ~ G, one has f(kg) = g-if(k).  

Theorem AL Let Q(M, G) be a principal fiber bundle, H a closed 
subgroup of  G, and F a homogeneous space (for G) such that, for any 
f ~  F, the isotropy group o f f  is Hf = H. There is a one-to-one correspondence 
between H structures P(M, H) in Q(M, G) and G-equivariant mappings 
4~ : Q ~ F. Moreover: 

(1) I f  P(M,  H)  is a H structure in Q(M, G), then the corresponding 
equivariant mapping d~:Q~ F is given by ~ ( p ) = g - i f ,  where p is of  the 
form p = Pog, for any Po ~ P- 

(2) If  4~ : Q ~ F is a G-equivariant mapping, then & - l ( f )  is the corre- 
sponding H structure in Q(M, G). 

Theorem A2. There is a one-to-one correspondence between smooth 
cross sections of a fiber bundle E(M, G, F), with the standard fiber F, 
associated with the principal fiber bundle Q(M, G) and G-equivariant 
mappings q~ : Q ~ F. If  a cross section o- : M ~ E corresponds to the mapping 
4~ : Q -~ F, then 

o'(Tr(p)) = (p, oh(p)} ~ E 

(See, for instance, Crittenden, 1962; Kobayashi and Nomizu, 1963; 
Gancarzewicz, 1987.) 

A P P E N D I X  B. SPHERE B U N D L E  

Let the sphere bundle UM be defined by 

U M  = {(x, X )  ~ T M :  X is unit and timelike} 

In the original work by Sachs (1973) it is additionally assumed that X 
is future-directed; we do not need this assumption. The bundle UM is 



564 Gruszezak et al, 

i s o m o r p h i c  (in the  b u n d l e  sense)  wi th  the  b u n d l e  ( O M  x Y~) /0(3 ,  1) associ-  
a ted  with  the  fiber b u n d l e  o f  p s e u d o o r t h o n o r m a l  f rames  O M ( M ,  0 ( 3 ,  1)), 
where  ~ =  {h ~ •4: rhkhih k = -1} ,  ~ = d i a g ( - 1 ,  1, 1, 1). The  i s o m o r p h i s m  is 

g iven by  

qs: ( O M x ~ ) / O ( 3 , 1 ) - ~  U M  

O((P, h)) = v,h ~ 

p = (Vo, �9 �9 �9 v3) e OM,  h = (h ~ . . . .  , h 3) e 

Let  r U M - ~  M be  a p ro j ec t i on  def ined  by  the inc lus ion  m a p  
: U M  ~ TM. On U M  the re  exists a un ique  R i e m a n n  met r ic  g~ def ined  in 

the  fo l lowing  way:  

gs( Y, Y )  = g(  d~ru Y, d~r~jY) + 2[g(dTr~Y, ~ ( X ) ) ]  2 + g(Fa,~v~,  ra~vAI,) 

where  g a n d  F are  the  Loren tz  met r ic  and  L e v i - C i v i t a  c onne c t i on  on  M, 
co r r e spond ing ly ;  g~ wil l  be  ca l led  the  Sachs metric. (See Sachs,  1973; 

D o d s o n ,  1978.) 
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